17: Iterated and Double I ntegrals

I ntegrating a Two Variable Function

Integrating a two variable function with respect to x yields a one variable function of y. Similarly, integrating a two variable function with respect to y will yield a one variable function of x.
Example: Evaluate $\int_{1}^{4} 2 x y+3 y d x$
Solution: We have

$$
\begin{aligned}
\int_{1}^{4} 2 x y+3 y d x & =\left.\left(x^{2} y+3 y x\right)\right|_{1} ^{4} \\
& =4^{2} y+3 y(4)-\left(1^{2} y+3 y(1)\right) \\
& =24 y
\end{aligned}
$$

I terated I ntegrals

It is possible to integrate $f(x, y)$ with respect to one variable and then integrate again with respect to the other variable. This is called an iterated integral.
Example: \quad Evaluate $\int_{0}^{2} \int_{1}^{4} 2 x y+3 y d x d y$.
Solution: We have
$\int_{0}^{2} \int_{1}^{4} 2 x y+3 y d x d y=\int_{0}^{2} 24 y d y$
$=\left.12 y^{2}\right|_{0} ^{2}$
$=12(2)^{2}-12(0)^{2}$
$=48$

Area Between Two Curves

Given curves $f(x)$ and $g(x)$ over $[a, b]$, the area between the curves is given by $\int_{a}^{b} \int_{f(x)}^{g(x)} 1 d y d x$

Given curves $h(y)$ and $k(y)$ over $[c, d]$, the area between the curves is given by $\int_{h(y)}^{k(y)} \int_{c}^{d} 1 d y d x$

Order of I ntegration

The order in which the integration is performed may be interchanged, that is

$$
\int_{a}^{b} \int_{c}^{d} f(x, y) d x d y=\int_{c}^{d} \int_{a}^{b} f(x, y) d y d x
$$

Volume

Given a function $f(x, y)$ and a region R, if $f(x, y) \geq 0$ over R then $\iint_{R} f(x, y) d A$ gives the volume under the surface.

Average Value

The average value of a function $f(x, y)$ over the region R is defined as $\frac{1}{A} \iint_{R} f(x, y) d A$ where A is the area of R.

Fubini's Theorem

The fact that the value of a double integral over the region R is the same no matter which order in which the integration is done is known as Fubini's Theorem.

Properties
 of Double I ntegrals

1. $\iint_{R} c \cdot f(x, y) d A=c \iint_{R} f(x, y) d A$
2. $\iint_{R} f(x, y) \pm g(x, y) d A=\iint_{R} f(x, y) d A \pm \iint_{R} g(x, y) d A$
3. $\iint_{R} f(x, y) d A \geq 0$ if $f(x, y) \geq 0$
4. $\quad \iint_{R} f(x, y) d A \geq \iint_{R} g(x, y) d A$ if $f(x, y) \geq g(x, y)$

How to Use This Cheat Sheet: These are the keys related this topic. Try to read through it carefully twice then recite it out on a blank sheet of paper. Review it again before the exams.

