11: The Unit Circle and Angle Measure

Key Terms

Concept map

- Angle: two rays extending from a single point called the vertex.
- Central angle: an angle whose vertex is at the center of a circle.
- Complementary angles: two acute angles whose measures add up to 90° or $n / 2$ radians.
- Degree: a unit of angle measure equal to $1 / 360$ revolution of a circle.
- Quadrantal angle: an angle where the terminal side lies on the x-axis or y-axis.
- Radian: a unit of angle measure where 2π radians equals 360°.
- Standard position: when an angle is drawn with its initial side on the positive x-axis and its terminal side on a radius r of a circle.
- Supplementary angles: two angles whose measures add up to 180° or $п$ radians.
- Unit circle: a circle centered at the origin of the coordinate plane with radius 1.

Key Formulas

- Arc length s, where r is the radius and θ is the central angle intersecting the arc: (θ is measured in radians)

$$
\mathrm{s}=\mathrm{r} \theta
$$

- Area of a sector, where r is the radius and θ is the central angle of the sector: (θ is measured in radians)

$$
A=\frac{1}{2} r^{2} \theta
$$

The Unit Circle

- Equation of the unit circle: $x^{2}+y^{2}=1$
- Circumference of the unit circle: 2π units
- Area of the unit circle: π square units
- Radius of the unit circle: 1 unit
- Positive angles are measured counterclockwise on the unit circle.
- Negative angles are measured clockwise on the unit circle.

- Degrees to Radians: degrees $\cdot \frac{\pi}{180^{\circ}}=$ radians
- Radians to Degrees: radians $\cdot \frac{180^{\circ}}{\pi}=$ degrees
- Degrees to Minutes: minutes $=60$. degrees
- Minutes to Degrees: degrees $=\frac{\text { minutes }}{60}$
- Minutes to Seconds: seconds $=60$ • minutes
- Seconds to Minutes: minutes $=\frac{\text { seconds }}{60}$

Example: Convert Radians to Degrees

Find the degree measure that is equivalent to an angle that measures $\frac{3 \pi}{4}$ radians.

Solution:

$$
\begin{aligned}
\text { radians } \begin{aligned}
\frac{180^{\circ}}{\pi} & =\text { degrees } \\
\frac{3 \pi}{4} \cdot \frac{180^{\circ}}{\pi} & =\text { degrees } \\
\frac{3 \cdot 180^{\circ}}{4} & =\text { degrees } \\
135^{\circ} & =\text { degrees }
\end{aligned} \\
\end{aligned}
$$

Example: Arc Length

Find the length of the arc created by a circle of radius 2 and a central angle measuring $\frac{\pi}{6}$.

Solution: Use the formula for arc length, $s=r \theta$.

$$
r=2 \quad \theta=\frac{\pi}{6}
$$

Insert the given values into the formula.

$$
s=2 \cdot \frac{\pi}{6}=\frac{2 \pi}{6}=\frac{\pi}{3}
$$

How to Use This Cheat Sheet: These are the key concepts related this topic. Try to read through it carefully twice then write it out on a blank sheet of paper. Review it again before the exams.

