DAT General Chemistry - Core Concept Cheat Sheet

		11: Liquid	s and Solids
Key Chemistry Terms			Vapor Pressure Equilibrium
 Intramolecular forces: chemical bonds within a molecule. Intermolecular forces (IMF): physical attractions between separate molecules. Dipole: Partial separation of charge. London Dispersion Forces: Temporary dipole due to 			 Initially the liquid particles escape resulting in gas particles, those gas particles can collide with the liquid and re-join it. The rate of gas evaporating remains the same. The rate of gas particles re-joining the liquids increases as more gas particles are made from evaporation. Vapor Pressure equilibrium is established over time.
electrons ganging up on one side of the molecule.Dipole-Dipole Forces: Attractions between opposite			Solid
 charges in two polar molecules. Ion Dipole Forces: Attraction between an ion and the opposite charge on a polar molecule. Hydrogen bonding: Very strong dipole present when an H bonds to an N, O or F. The H can then "hydrogen bond" with the lone pairs on an N, O or F of a different molecule. Vapor Pressure: Pressure caused by particles evaporating from a solid or liquid. 			Properties of solids:
			 Definite shape and volume. Particles are not free to move past one another. Not compressible.
			Amorphous solid particles are "trapped" in place before they can arrange themselves into a repeating pattern.
• Equilibrium: The rate of change is equal to the rate of the opposite change.			Three types of crystalline solids:
 Amorphous solid: No repeatable structure of components. Crystalline solid: Repeating unit cell of the components. Lattice: Overall structure of crystalline solid. Unit Cell: Repeating unit in lattice. Atomic solids: Atoms are the components of the unit cells. Molecular solids: Molecules are the components of the unit cell. Phase change: Matter changes from one state to another. Phase Diagram: Shows the state of matter at various temperature and pressures. Enthalpy of fusion (Hfus): Energy needed to break enough intermolecular forces to melt. Enthalpy of vaporization (Hvap): Energy needed to break remaining IMF's to evaporate a liquid. 			 <u>Atomic solids</u> <u>Metallic solids</u>—closest packing of metal atoms. Electrons are in a pool and are free to move throughout.
			 <u>Network solids</u>—one giant molecule. Each atom is covalently bonded to surrounding atoms <u>Molecular solids</u>—strong covalent bonds within the molecular, weaker physical attractions between them <u>Ionic solids</u>—electrostatic attraction between ions. Ions are stacked to minimize like-charge repulsions
			Phase Changes
			Melting/freezing: solid ≒ liquid Boiling/condensing: liquid ≒ gas Sublimation/deposition: solid ≒ gas
Intermolecular Forces			Melting: Requires energy to break some IMF.
IMF	Happens with	Relative strength	 Boiling: Requires energy to break remaining IMF. Subliming: Requires energy to break all the IMF. Deposition, condensation and freezing: Energy is released a
London Dispersion Forces		Weakest IMF	IMF's formed.
Dipole-Dipole Forces	2 polar molecules	Medium strength	Boiling/Condensation Point: Temperature at which liquid and gas are at equilibrium.
Ion-Dipole Forces	Ion and a polar molecule	Medium strength	Vapor pressure of liquid = atmospheric pressure
Hydrogen Bonding	H on an N, O or F with an N, O or F on another molecule	Strongest IMF	 Melting/Freezing Point: Temperature at which solid and liquid are at equilibrium. Vapor pressure of solid = Vapor pressure of liquid
London Dispersion Forces are temporary, and therefore weaker. The larger the molecule, the greater the London			Substances sublime when the IMF are so weak that all of them are broken at that temperature and pressure.
weaker. The larger			
weaker. The larger	the molecule, the gr		Energy of Phase Changes
weaker. The larger Dispersion Forces	the molecule, the gr		· · ·
weaker. The larger Dispersion Forces Properties of liqui • Definite volume bu	the molecule, the gr Liquids ds: ut not shape. to move past one an	eater the London	Energy of Phase Changes
weaker. The larger Dispersion Forces Properties of liqui • Definite volume be • Particles are free t • Not very compress	the molecule, the gr Liquids ds: ut not shape. to move past one an	eater the London	Energy of Phase Changes Equations for energy change (ΔH) during a phase change: