

	Reduction Versus Oxidation	
	Reduction Reaction – Gain of electrons, e ⁻ . (Charge is "reduced" by adding negative electrons).	
	Examples:	
	$Cu^{2+} + 2e^- \rightarrow Cu$	
	$F_2 + 2 e^- \rightarrow 2 F^-$	
	Oxidation Reaction – Loss of electrons, e	
	Examples:	
	$Cu \rightarrow Cu^{2+} + 2 e^{-}$	
	2 F ⁻ → F ₂ + 2 e ⁻	1º
22/48		ų.

	Solubility	Rules				
	Look up the anion in the left column to see which cations it forms insoluble compounds with:					
		Forms insoluble compounds with (<i>N</i> '=NH ₄ +, <i>G1A</i> =Group 1A)				
	NO ₃ -	No common cations				
	CH ₃ COO ⁻	Ag⁺ (moderately soluble)				
	Cl ⁻ , Br ⁻ , l ⁻	Hg ₂ ²⁺ , Ag ⁺ , Pb ²⁺ (<i>HAP</i> for <i>Hal</i> ogens)				
	SO4 ²⁻	Ag ⁺ , Pb ²⁺ , Ba ²⁺ , Sr ²⁺ , Ca ²⁺ (CAPBS for Sulfates)				
	CrO ₄ ²⁻	All cations except NH ₄ *, 1A elements (C - N' G1A)				
	S ²⁻	All cations except NH ₄ ⁺ , 1A elements (S - N' G1A)				
	OH-	All cations except NH ₄ ⁺ , 1A elements (O - N' G1A) Ba ²⁺ and Sr ²⁺ (moderately soluble)				
	CO ₃ ²⁻ , PO ₄ ³⁻	All cations except NH ₄ ⁺ , 1A elements (C,P - N' G1A)				
	NH ₄ ⁺ , Na ⁺ and K ⁺ (Group 1A) are soluble with all common anions.					
31/48	Solubility Rule N Sully; CCOPS excep	Inemonic: All precipitates = "HAP for Hal; CAP BS for t N' G1A (Gia)".				

	Double Displacement - 4	
	 Remember to write cations first & balance charges with subscripts when writing formulas. Ag* Cl* 	
	$CaCl_2 (aq) + AgNO_3 (aq) \longrightarrow Ca^{2+} NO_3^{-}$ $Qac_2 + AgNO_3 (aq) \longrightarrow Ca^{2+} NO_3^{-}$ $Qac_2 + AgNO_3 (aq) \longrightarrow Ca^{2+} NO_3^{-}$	- CI
43/48		4

