CLEP College Mathematics – Core Concept Cheat Sheet

04:	Logic
Key Terms	Concept Map
• Boolean algebra: the algebra of logic; a symbolic representation of statements that are either true or false.	Logic
• Conclusion: the part of a conditional statement that comes after "then".	Conditional Statements Boolean Algebra
• Conditional statement: a statement that can be written in the form "if <i>p</i> , then <i>q</i> ."	
• Conjunction: two statements combined using the word "and".	Hypothesis Converse Laws Venn Diagrams
• Contrapositive: the conditional "if not <i>q</i> , then not <i>p</i> ", given the conditional statement "if <i>p</i> , then <i>q</i> ."	Conclusion Inverse
• Converse: the conditional "if <i>q</i> , then <i>p</i> " given the conditional statement "if <i>p</i> , then <i>q</i> ."	Contrapositive
• Counterexample: used to prove a conditional statement is false; will show the hypothesis is true and the conclusion	To construct a Venn diagram:
is faise.	1. Identify the concepts being compared.
• Disjunction: two statements combined using the word "or"	2. List the similarities and differences of the concepts.
Hypothesis: the part of a conditional statement that comes after "if".	 overlapping for similarities. 4. List the common characteristics of concepts in the
• Inverse: the conditional "if not <i>p</i> , then not <i>q</i> ", given the conditional statement "if <i>p</i> , then <i>q</i> ."	overlapping areas; list unique characteristics in the non- overlapping areas.
• Logic: the science that investigates the rules controlling	Example: Hypothesis and Conclusion
 reliable inference. Necessary condition: if we do not have <i>p</i>, then we won't 	Identify the hypothesis and conclusion: If it is a weekday, then the office is open.
have <i>q</i>.Negation: the opposite meaning of the original conditional	Solution: The hypothesis is what follows "if"; the conclusion is what follows "then".
statement.	Hypothesis → It is a weekday.
• Sufficient condition: if we have <i>p</i> , we know that <i>q</i> must follow.	
• Truth value: whether a conditional statement is true or false.	Write the converse of this statement: If you are in the city of Los Angeles, then you are in the state of
• Truth table: a table showing the truth values of the hypothesis, conclusion, and some of the related	California. Solution: Switch the roles of the hypothesis and conclusion to
statements.Universal set: the set that contains all of the elements	create the converse of a conditional statement. Converse \rightarrow If you are in the state of California, then you are
relevant to a given discussion.	in the city of Los Angeles. The truth value of the converse is false.
more overlapping circles.	Example: Inverse
Laws of Boolean Algebra	Write the inverse of this statement: If the sum of the
Some laws of Boolean algebra are:	measures of two angles is 90°, then the two angles are
Associative Law: $a \lor (b \lor c) = (a \lor b) \lor c$	Solution: Find the inverse of a conditional statement by
$a \land (b \land c) = (a \land b) \land c$	replacing the hypothesis and conclusion with their negations.
Commutative Law: $a \lor b = b \lor a$	Inverse \rightarrow If the sum of the measures of two angles is not 90°, then the two angles are not complements.
$a \wedge b = b \wedge a$	The truth value of the inverse is true.
Distributive Law: $a \land (b \lor c) = (a \land b) \lor (a \land c)$	Example: Contrapositive
$a \lor (b \land c) = (a \lor b) \land (a \lor c)$	Write the contrapositive of this statement: If the sum
Identify Law: $a \lor a = a$	of the measures of two angles is 90°, then the two angles are complements.
$a \wedge a = a$	Solution: The contrapositive of the conditional statement "if <i>p</i> ,
$a \wedge a = 0$	then q^n , is the conditional "if not q , then not p ."
Distributive Law: $a \land (b \lor c) = (a \land b) \lor (a \land c)$	Contrapositive \rightarrow If two angles are not complements, then the sum of the measures of the two angles
$a \lor (b \land c) = (a \lor b) \land (a \lor c)$	is not 90°.
	The truth value of the contrapositive is true.

How to Use This Cheat Sheet: These are the keys related this topic. Try to read through it carefully twice then rewrite it out on a blank sheet of paper. Review it again before the exams.