12: Quadratic Equations

Key Terms

Equation: a statement that two expressions have the same value. **Quadratic equations:** an equation that has the standard form $ax^2 + bx + c = 0$.

Zero product property: if ab = 0, the a = 0 or b = 0.

Factor: to rewrite an expression as a product.

Solutions or roots of the equation: values an equation takes when the values of its domain are substituted for the variable.

Solution set: collection of all solutions to an equation.

Quadratic inequality: a quadratic equation where the equal symbol is replaced by an inequality symbol.

Perfect square trinomial: $a^2 - 2ab + b^2 = (a - b)^2$; $a^2 + 2ab + b^2 = (a + b)^2$

Difference of two squares: $a^2 - b^2 = (a - b)(a + b)$

Discriminant: the value under the radical in the quadratic formula, $b^2 - 4ac$.

Quadratic function: function in the form $f(x) = ax^2 + bx + c$, where a, b, and c are real numbers and $a \neq 0$.

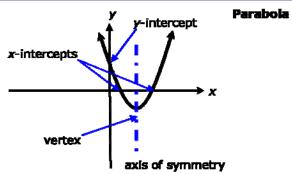
Parabola: the graph of a quadratic function.

Axis of symmetry: divides parabola into two equal parts, each part is a mirror image of another.

Vertex: point where the parabola intercepts the axis of symmetry. **x-intercepts**: the points where parabolas intercepts x-axis (where y = 0).

y-intercepts: point where the parabola intercepts the *y*-axis (where x = 0).

Quadratic Function Graph



A parabola can open downward (a < 0) or upward (a > 0).

Example: Factoring

Solve. $x^2 - x - 2 = 0$

Solution:

(x-2)(x+1) = 0 Factor left side x-2 = 0 or x+1 = 0 Apply zero-product x=2 or x=-1 Solve equations

The solution set of this equation is $\{-1, 2\}$.

Example: Square Root Method

Solve using the square root method. $x^2 - 9 = 0$

Solution:

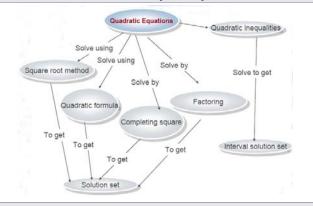
 $x^2=9$

 $x = \pm \sqrt{9}$

x = 3 or x = -3

The solution set of this equation is $\{-3, 3\}$.

Concept Map



Example: Quadratic Inequality

Find the solution set. $x^2 + 3x < 18$

Solution: Put the equation in standard form.

 $x^2 + 3x - 18 < 0$

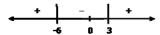
To define boundaries, change the inequality to an equality then find the solution of the equation.

 $x^2 + 3x - 18 = 0$

(x + 6)(x - 3) = 0

x = -6 or 3

Denote the test intervals: $(-\infty, -6)$, (-6, 3), $(3, \infty)$. Find the sign, positive or negative, in each interval using test values.



The solution set of the inequality is the interval (-6, 3).

Example: Quadratic Formula

Solve using the quadratic formula. $2x^2 - 3x + 1 = 0$ Solution: Identify a, b, and c of the quadratic equation, then use the quadratic formula to solve.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$= \frac{-(-3) \pm \sqrt{1}}{2(2)}$$
$$= 1 \text{ and } \frac{1}{2}$$

The solution set of this equation is $\{\frac{1}{2}, 1\}$.

Example: Complete the Square

Solve by completing the square. $4x^2 - 12x = -5$ Solution:

 $4x^2 - 12x = -5$

 $4x^2 - 2(3)(2x) + 9 = -5 + 9$

 $(2x - 3)^2 = 4$

Apply the square root method.

 $2x - 3 = \sqrt{4} = 2$ or $2x - 3 = -\sqrt{4} = -2$

Solve the equations.

$$2x - 3 = 2$$

$$2x-3=-2$$

2x - 3 + 3 = 2 + 3

2x - 3 + 3 = -2 + 3

$$2x = 5$$

or

2x = 1

x = -5

 $x=\frac{1}{2}$

The solution set of this equation is $\left\{\frac{1}{2}, \frac{5}{2}\right\}$

How to Use This Cheat Sheet: These are the key concepts related this topic. Try to read through it carefully twice then rewritte it out on a blank sheet of paper. Review it again before the exam.