09: Factoring Polynomials

Key Terms

- Binomial: a polynomial with exactly two terms.
- Factorable polynomial: a polynomial that can be converted to the product of some other polynomials.
- Factoring: the process of finding polynomials whose product is equivalent to a given polynomial.
- Monomial: a polynomial with exactly one term.
- Polynomial: the sum of terms with real coefficients and variable factors with whole number exponents; the sum of monomials.
- Prime polynomial: a polynomial that cannot be converted to the product of at least two factors other than 1.
- Trinomial: a polynomial with exactly three terms.

Special Factoring I dentities

- Square of a Binomial - Addition

$$
a^{2}+2 a b+b^{2}=(a+b)^{2}
$$

- Square of a Binomial - Subtraction

$$
a^{2}-2 a b+b^{2}=(a-b)^{2}
$$

- Difference of Two Squares

$$
a^{2}-b^{2}=(a+b)(a-b)
$$

- Difference of Two Cubes

$$
a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)
$$

- Sum of Two Cubes

$$
a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)
$$

Factoring Methods

- GCF Method

Sometimes, the terms of a polynomial all share some common factors. The product of these common factors is called the greatest common factor (GCF) of all the terms.

- Grouping Method

When a polynomial has four or more terms, it is sometimes necessary to use the grouping method to factor. Group terms in a polynomial such that each group shares a common factor. Then factor the GCF from each group.

- Factoring With a Leading Coefficient of 1

To factor a trinomial of the form $x^{2}+p x+q$, find two numbers, a and b, such that: $a+b=p$ and $a b=q$. Then use the following identity to factor the trinomial:

$$
x^{2}+(a+b) x+a b=(x+a)(x+b)
$$

- Factoring With a Leading Coefficient of A

To factoring a trinomial of the form $A x^{2}+B x+C$:

1. Find the product of A and C.
2. Find two numbers, p and q, with a sum of B and a product of C .
3. Factor A into two numbers, u and v, such that p and q are each divisible by one of the factors.
4. Assume that p is divisible by u , and q is divisible by v . Let $m=p / u$ and $n=q / v$.
5. The factored form of the trinomial will be:

$$
(u x+n)(v x+m)
$$

Concept Map

Example: Solve By Factoring

Solve the equation by factoring:

$$
x^{2}+3 x-28=0
$$

Solution:
Using a table, find the two numbers with a sum of 3 and a product of -28.

$a=-28$	$a=28$	$a=-14$	$a=14$	$a=-7$	$a=7$
$b=1$	$b=-1$	$b=2$	$b=-2$	$b=4$	$b=-4$
$p=-27$	$p=27$	$p=-12$	$p=12$	$p=-3$	$p=3$
$q=-28$	$q=-28$	$q=-28$	$q=-28$	$q=-28$	$q=-28$

These numbers are 7 and -4 , so:

$$
(x+7)(x-4)=0
$$

Set each factor equal to 0 and solve:

$$
\begin{array}{rlrl}
x+7 & =0 & x-4 & =0 \\
x & =-7 & x & =4
\end{array}
$$

Tips \& Reminder

- Factoring is finding polynomials whose product is a given polynomial.
- Factorable polynomials can be converted to the product of some other polynomials.
- Prime polynomials cannot be converted to the product of at least two factors other than 1.
- If all the terms in a polynomial share a common factor, then the first step in the factoring process is to factor out the GCF.
- When a polynomial has four or more terms, it may be necessary to us the grouping method to factor.
- Some special polynomials require using identities backwards to factor.
- Some equations of higher degree can be solved using factoring if they are of the form polynomial $=0$.

How to Use This Cheat Sheet: These are the key concepts related this topic. Try to read through it carefully twice then rewrite it out on a blank sheet of paper. Review it again before the exam.

